The Mass Air Flow (MAF) sensor measures the amount of air which passes through it into the engine during a given time. The PCM uses the mass air flow information to monitor engine operating conditions for fuel delivery calculations. A large quantity of air entering the engine indicates an acceleration or high load situation, while a small quantity of air indicates deceleration or idle. The MAF sensor produces a frequency signal which can be monitored using a scan tool. The frequency will vary within a range of around 2000 Hertz at idle to about 10,000 Hertz at maximum engine load. DTC P0101 will be set if the signal from the MAF sensor does not match a predicted value based on barometric pressure (calculated from MAP at key ON), throttle position, and engine RPM.
• | No MAP sensor or TP sensor DTC(s) are set. |
• | The engine is running. |
• | The throttle is steady and TP angle is below 50%. |
• | EGR duty cycle is below 50%. |
• | EGR pintle position is below 50%. |
• | MAF signal frequency indicates an airflow significantly higher or lower than a predicted value based on barometric pressure, throttle position and engine rpm. |
• | Above conditions present for at least 20 seconds. |
• | The PCM will illuminate the malfunction indicator lamp (MIL) the first time the malfunction is detected. |
• | The PCM calculates an airflow value based on idle air control valve position, throttle position, RPM and barometric pressure. |
• | The PCM will store conditions which were present when the DTC set as Freeze Frame and Failure Records data. |
• | The PCM will turn OFF the MIL during the third consecutive trip in which the diagnostic has been run and passed. |
• | The History DTC will clear after 40 consecutive warm-up cycles have occurred without a malfunction. |
• | The DTC can be cleared by using the scan tool. |
Check for the following conditions:
Skewed or stuck TP sensor. A faulty TP sensor or TP sensor circuit can cause the PCM to incorrectly calculate the predicted mass air flow value. Observe Throttle Angle with the throttle closed. If the Throttle Angle reading is not 0%, check for the following conditions and repair as necessary:
• | Throttle plate sticking or excessive deposits on throttle plate or throttle bore, |
• | TP sensor signal circuit shorted to voltage, |
• | Poor connection or high resistance in the TP sensor ground circuit. |
If none of the above conditions are noted and the Throttle Angle reading at closed throttle is not 0%, replace the TP sensor. Refer to Throttle Position Sensor Replacement .
• | Poor connection at PCM. Inspect harness connectors for backed out terminals, improper mating, broken locks, improperly formed or damaged terminals, and poor terminal to wire connection. |
• | Misrouted harness. Inspect the MAF sensor harness to ensure that it is not routed too close to high voltage wires such as spark plug leads. |
• | Damaged harness. Inspect the wiring harness for damage. If the harness appears to be OK, observe the scan tool while moving connectors and wiring harnesses related to the MAF sensor. A change in the display will indicate the location of the fault. |
• | Plugged intake air duct or dirty air filter element. A wide-open throttle acceleration from a stop should cause the Mass Air Flow displayed on a scan tool to increase from about 4-7 gm/s at idle to 100 gm/s or greater at the time of the 1-2 shift. If not, check for a restriction. |
• | Skewed MAP sensor. A Skewed MAP sensor can cause the BARO reading to be incorrectly calculated. To check the MAP sensor, compare the BARO reading on the vehicle being diagnosed to the BARO reading on a normally operating vehicle. If a large difference is noted (over 8 kPa), replace the MAP sensor. This condition may also cause abnormally high IAC counts. If a comparison vehicle is not available, check the IAC counts at with the engine running just off idle. If IAC counts are very high, replace the MAP sensor. Refer to Manifold Absolute Pressure Sensor Replacement . |
If DTC P0101 cannot be duplicated, the information included in the Fail Records data can be useful in determining vehicle mileage since the DTC was last set. This may assist in determining how often the DTC sets.
Number(s) below refer to the Step number(s) on the Diagnostic Chart:
This step verifies that the problem is present.
This step verifies a proper MAP/BARO value at initial key ON. If the MAP sensor is stuck the barometric pressure value will be incorrectly calculated. This will cause the predicted Mass Air Flow calculations to be inaccurate. DTC P0101 will set if the MAF sensor signal does not match the predicted MAF value.
This step verifies a proper MAP sensor signal with engine running. With a closed throttle and proper engine vacuum, the MAP sensor signal should be between 29 kPa and 48 kPa.
This step verifies a proper MAP sensor response as the throttle is opened. As the throttle is steadily opened, pressure in the intake manifold increases. The MAP sensor signal should increase steady as the pressure increases.
Checks for conditions which can cause a good MAF sensor to appear faulty.
A voltage reading of less than 4 or over 6 volts at the MAF sensor signal circuit indicates a fault in the wiring or a poor connection.
Verifies that ignition feed voltage and a good ground are available at the MAF sensor.
This vehicle is equipped with a PCM which utilizes an Electrically Erasable Programmable Read Only Memory (EEPROM). When the PCM is being replaced, the new PCM must be programmed.
Step | Action | Value(s) | Yes | No | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Was the Powertrain On-Board Diagnostic (OBD) System Check performed? | -- | ||||||||||||||
Is DTC P1635 also set? | -- | Go to DTC P1635 | ||||||||||||||
3 |
Does scan tool indicate DTC P0101 failed this ign? | -- | Refer to DTC P0101 Diagnostic Aids | |||||||||||||
Does the scan tool indicate a value within the specified range? | 65 kPa-105 kPa | |||||||||||||||
Does the scan tool display a value within the within the specified range? | 29 kPa-48 kPa | |||||||||||||||
Monitor the MAP sensor display on the scan tool while slowly increasing engine speed to 3000 RPM. Does the MAP sensor value change? | -- | |||||||||||||||
Was a problem found? | -- | |||||||||||||||
8 | Replace the MAP sensor. Refer to Manifold Absolute Pressure Sensor Replacement . Is action complete? | -- | -- | |||||||||||||
9 |
Does the scan tool display Yes? | -- | ||||||||||||||
Is the voltage near the specified value? | 5V | |||||||||||||||
Connect a J 35616-200 test light between the MAF sensor ignition feed and ground circuits at the MAF sensor harness connector. Is the test light ON? | -- | |||||||||||||||
12 | Is the voltage less than the specified value? | 4.5V | ||||||||||||||
13 |
Does the voltage measure near the specified value? | 0V | ||||||||||||||
14 | Connect a test light between MAF sensor ignition feed circuit and chassis ground. Is the test light ON? | -- | ||||||||||||||
15 |
Was a problem found? | -- | ||||||||||||||
16 |
Was a problem found? | -- | ||||||||||||||
17 | Locate and repair the open in the ground circuit to the MAF sensor. Refer to Repair procedures in Electrical Diagnosis. Is action complete? | -- | -- | |||||||||||||
18 | Locate and repair the open in the ignition feed circuit to the MAF sensor. Refer to Repair procedures in Electrical Diagnosis. Is action complete? | -- | -- | |||||||||||||
19 | Locate and repair the short to voltage in the MAF signal circuit. Refer to Repair procedures in Electrical Diagnosis. Is action complete? | -- | -- | |||||||||||||
20 | Replace the MAF sensor. Go to Mass Airflow Sensor Replacement . Is action complete? | -- | -- | |||||||||||||
Replace the PCM. Important:: The replacement PCM must be programmed. Go to Powertrain Control Module Replacement/Programming . Is action complete? | -- | -- | ||||||||||||||
22 |
Does the scan tool indicate DTC P0101 failed this ign? | -- | System OK |